User Manual

Preface

Thank you for purchasing our products!

This manual is about meter functions, settings, connection methods, operation flow, and methods to identify the faults. Please read this manual carefully before operating and using it correctly.

After reading it, please keep it properly in the place where you may read it any time for your reference.

Note

Modification of this manual contents will not be notified as a result of some factors, such as function upgrading.

We try our best to guarantee that the manual content is accurate, if you find something wrong or incorrect, please contact us.

Any reprint and copy of the manual content are strictly prohibited either in whole or in part.

Version

IMQ52F-EZ02d the second edition Jun. 2024

CHAP.	TER 1 SAFETY INSTRUCTIONS	- 1	-				
1.1	Manufacturer's Safety Instructions 1 -						
1.2	1.2 Safety Instructions for Operators						
CHAPTER 2 EQUIPMENT INTRODUCTION							
2.1	Scope of Delivery	- 4	-				
2.2	Principle of electromagnetic flowmeter measurement	- 5	-				
2.3	Structure of electromagnetic flowmeter	- 6	-				
2.4	Use environment description	- 7	-				
2.5	Terminal description	- 8	-				
2.6	Name Plate	- 9	-				
CHAP.	TER 3 INSTALLATION	10	-				
3.1	Installation Tips	10	-				
3.2	Storage	10	-				
3.3	Installation Requirements	10	-				
3.4	Piping design	11	-				
3.5	Sensor installation process	13	-				
3.6	Machinery installation	16	-				
3.7	Dimensions of the pipeline electromagnetic flowmeter	17	-				
3.8	Dimensions of plug-in electromagnetic flowmeter	18	-				
CHAP.	TER 4 ELECTRICAL CONNECTION	26	-				
4.1	Safety Tips	26	-				
4.2	Connect Signal and Magnetic Field Current Cable	27	-				
4.3	Measurement Sensor Ground	29	-				
4.4	Connected to Power	30	-				
4.5	Output introduction	32	-				
CHAP.	TER 5 STARTUP	34	-				
5.1	Power on	34	-				
5.2	Converter startup	34	-				
CHAP.	TER 6 OPERATION	35	-				
6.1	Flow display and operation Button	35	-				
6.2	Flow parameter display interface	37	-				
6.3	Perating instructions for mechanical keys	39	-				
6.4	Operating instruction	40	-				
6.5	Configuration details	44	-				
6.6	Quick setup menu	54	-				
CHAP.	TER 7 FUNCTIONS	55	-				
7.1	System information	55	-				
7.2	Pulse/Frequency/Current output	56	-				
7.3	Serial communication	58	-				
7.4	Firmware upgrade instructions	60	-				
	Operation instructions of flow correction function						
CHAP.	TER 8 TECHNICAL PARAMETERS	65	_				

8.1	Technical parameters	-	65	-
8.2	Flow Meter	-	69	-

Chapter 1 Safety Instructions

1.1 Manufacturer's Safety Instructions

Copyright and Data Protection

The content of this document has been checked carefully, but we do not guarantee that the contents are totally accurate, and it is in accordance with the latest version.

The contents and works of this document are under China's copyright protection. Materials from the third party have been marked. Any copy, processing and transmission of it out of the scope of copyright, in any forms, must get the written permission of the authors or the manufacturer.

Manufacturers always try to respect the copyrights of others and try to use their own works or works without authorization.

Personal data (such as name, address or E-mail address) used in manufacturer's documents, if possible, are conducted on a voluntary basis. Use of products and services, if possible, starts without having to provide personnel data. We remind you: data transmission on the Internet (such as communicating via email) may possibly meet security vulnerabilities. We can't give security guarantee that data will definitely not be obtained by a third party. Here, we are clearly against the third-party using contact data, within the scope of copyright notice obligation, to send advertising materials without any requirement.

Exemption Clause

The manufacturer will not bear the responsibility for any forms of loss caused by using the product; these consequences include direct, indirect or accidental losses as well as these coming from punishment, but not limited to these consequences.

If the manufacturer has intentional behavior or gross negligence, the disclaimer is invalid. If it is not allowed to limit the product's self-assurance, nor is it allowed to waive or limit certain types of compensation, and these rights are suited for you as well as according to applicable laws, in this case the above disclaimer or limitations may partially or completely not apply to you.

For every purchase of products, they are applicable to product documentation and manufacturer's sale terms.

Safety Instructions

As for document contents including this disclaimer, the manufacturer reserves and has the right to modify at any time in any way for any reason without any notice in advance, and it will not bear the responsibility for the consequences coming out of any forms of change.

Product Liability and Warranty

The operator judges whether the flow meter serves the purpose and bear the responsibility for it. The manufacturer does not assume the consequences caused by operator's misuse of meter. Wrong installation and operation of flow meter (system) will lead to deprive of warranty rights. In addition, the corresponding 'standard sales terms' applies as well, and the clause is the basis of purchase contract.

Document Details

In order to avoid harm or damage to the equipment when used improperly, please make sure reading the information in this document before using it. In addition, you must comply with national standards, safety regulations and accident prevention rules.

If you can't understand this document, please ask the manufacturer for help. The manufacturer will not take the responsibility for property loss or physical injuries due to misunderstanding of the information contained in the document.

This document will help you to establish favorable operating conditions so as to make sure that you use the equipment in a safe and effective way. In addition, something of particular attention and safety measures in the document are marked by the following marks.

Display Convention

The following symbols will make it easier for you to use this document.

Danger!

This symbol signifies related and important safety tips.

Warning!

Such warnings must be paid attention to. Slight negligence may lead to serious health threat, and may damage the equipment itself or the operating factory facilities.

Note!

Such warnings must be paid attention to. Any slight negligence may also lead to functional fault of the equipment itself.

Tips!

This symbol signifies related important information concerning operating instrument.

1.2 Safety Instructions for Operators

Warning!

Only corresponding personnel who got trained and authorized is allowed to install, use, operate and maintain the equipment. This document will help you to establish favorable operating conditions so as to make sure that you use the equipment in a safe and effective way.

Equipment Introduction

Chapter 2 Equipment Introduction

2.1 Scope of Delivery

Tips!

Please check whether the boxes are damaged or not, and whether they have been handled roughly or not. Please report the damage to the deliverer and the manufacturer.

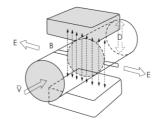
Note!

Please check the packing list to make sure that all the goods you received are integrated.

Note!

Please check the name plate of the equipment, and confirm whether the power supply is the same as your order. If incorrect, please contact manufacturer or supplier.

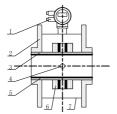
2.2 Principle of electromagnetic flowmeter measurement


Principle of electromagnetic flowmeter measurement

The working principle of electromagnetic flowmeter is based on Faraday's electromagnetic induction law. In the figure, the two electromagnetic coils at the top and bottom generate constant or alternating magnetic fields. When the conduction medium flows through the electromagnetic flux, the induction electromotive force can be detected between the left and right electrodes on the wall of the flowmeter. The magnitude of this induction electromotive force is proportional to the velocity of the conducting medium, the magnetic induction intensity of the magnetic field and the conductor width (the inner diameter of the flowmeter measuring tube). The equation of induced electromotive force is:

E=K×B×V×D

Among them:


- E induced electromotive force
- K instrument factor
- B Magnetic induction intensity
- V average flow rate in the pipe section
- D the inner diameter of the pipe

Measuring flow rate, fluid flows through the magnetic field perpendicular to the flow direction, fluid flow induction conductivity an induction electric potential is proportional to the average flow velocity, so the measured conductivity is higher than the minimum of the electric conductivity of liquid flow - 5 us/cm (electromagnetic flowmeter can measure conductivity greater than 5 us/cm theoretically conductive medium, but should guarantee the electromagnetic flowmeter in practical measurement used in the electrical conductivity measured medium in 30 us/cm or above (greater than the theoretical value for one to two orders of magnitude) environment, and must be based on online measurement of electrical conductivity value). The induced voltage signal through two electrodes detection, and through the cable sent to converter, after a series of analog and digital signal processing, cumulative flow and transient flow display screen in converter.

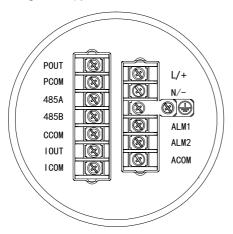
2.3 Structure of electromagnetic flowmeter

As can be seen from the figure, the electromagnetic flowmeter mainly consists of the following parts:

- 1-conveter
- 2-flange
- 3-insulation lining
- 4-electrode
- 5-measuring tube
- 6-excitation coil
- 7-shell

The electromagnetic flowmeter is mainly composed of two parts, the sensor and the converter. The sensors include flange, liner, motor, measuring tube, excitation coil and sensor housing. The converter comprises an internal circuit board and a converter shell.

- converter: provide stable excitation current for the sensor, at the same time, the induction electromotive force obtained through the sensor is amplified and converted into standard electrical signal or frequency signal. Meanwhile, real-time flow rate and parameters are displayed for the display, control and adjustment of flow.
- 2. flange: connecting with process piping.
- insulation lining: a complete layer of electrically insulated corrosion resistant material on the inside of the measuring tube and the flange sealing surface.
- 4. electrode: A pair of electrodes are installed on the wall of the measuring tube perpendicular to the magnetic force line to detect the flow signal. The electrode material can be selected according to the corrosion performance of the measured medium. There are also 1-2 grounding electrodes for grounding and anti-interference measurement of flow signal.
- Measuring tube: the measuring tube flows through the measured medium.
 The measuring tube is welded with non-magnetic stainless steel and flanges lined with insulation lining.
- excitation coil: the measuring tube is equipped with a set of coils on the outside and below to generate the working magnetic field.
- 7. shell: plays a role of protection instrument and sealing role.


2.4 Use environment description

Electromagnetic flowmeter applies only to measure the instantaneous flow rate of an electrically conductive liquid or liquid-solid two-phase flow, and has a flow accumulation function. Typically, the meter factory parameters will vary depending on the requirements of the order set in advance, the user does not need to set parameters before use, but requires the user to the nameplate on the pre-use check whether the parameters have been set up in advance, and with the actual working conditions do check.

Theoretically medium conductivity of not less than $5\mu S$ / cm can use ordinary type electromagnetic flowmeter cm, but the fact that ordinary electromagnetic flowmeter can measure the electrical conductivity higher than the theoretical value should be one to two orders of magnitude, at least more than $50\mu S$ / cm . Meanwhile conductivity measurement must be online measured conductivity prevail, there will be off-line measurement of air carbon dioxide, nitrogen dioxide dissolved into the media resulting in higher conductivity.

2.5 Terminal description

Integrative type

L, N: 220VAC power supply

+, -: 24V DC power supply

ALM1, ALM2: Alarm output

ACOM: Alarm common end

POUT, PCOM : Pulse/Frequency output

485A,485B: 485 serial communication

CCOM: 485 serial communication ground

IOUT, ICOM: 4-20mA output connection

Converter instrument grounding protection

2.6 Name Plate

Note!

Please check the name plate of the equipment and confirm whether the power supply is the same as your order and is correct. If incorrect, please contact the manufacturer.

Electromagnetic Flow Meter

MODEL	ř.		
PRESSURE	-	VOLTAGE	
SIZE	1	PROTECTION	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FACTOR		FLUID TEMP.	
RANGE		AMB. TEMP.	1
ELECTRODE			
LINING		PN	
ACCURACY		DATE	

Chapter 3 Installation

3.1 Installation Tips

Note!

Please check carefully whether the boxes are damaged .

Note!

Please check the packing list to make sure the goods that you receive is complete.

Note!

Please check the instrument nameplate, and confirm the delivery item is same with your order. Check the nameplate voltage is correct. If not correct, please contact the manufacturer.

3.2 Storage

- The instrument should be stored in a dry and clean place.
- Avoid exposure in direct sunlight for long.
- Instrument should be stored in the original package.

3.3 Installation Requirements

Note!

In order to ensure the installation reliably , the following measures must be taken.

Enough space should be spared by its side

Converter shouldn't be suffered by violent vibration

3.4 Piping design

Note!

The following considerations are taken into account in piping design:

1. place:

The electromagnetic flowmeter should be installed in a dry and ventilated place.

Electromagnetic flowmeter should avoid sun exposure and rain, when installed in the open air, there should be protection against rain and sun protection facilities. The environment temperature is between - 20 $^{\circ}$ C ~ +

60 °C.

The electromagnetic flowmeter should avoid being installed in places with large temperature changes and exposed to high temperature radiation of the equipment. If necessary, it should be insulated and ventilated.

The electromagnetic flowmeter should avoid being installed in the environment containing corrosive gas. When installation is necessary, ventilation and anti-corrosion measures should be taken.

The installation site of the electromagnetic flowmeter should avoid strong vibration as far as possible. For example, the vibration of the pipe is large, and there should be a fixed pipe bracket on both sides of the electromagnetic flowmeter.

The sensor part of the electromagnetic flowmeter with IP68(3 meters under water) protection level can be placed in water. The electromagnetic flowmeter with protection class IP65 shall not be immersed in water and installed in the open air.

Avoid magnetic field interference:

The electromagnetic flowmeter should not be installed near motors, transformers or other power sources that may cause electromagnetic interference. Electromagnetic flowmeter should not be installed near the converter or get power from the converter distribution cabinet to avoid interference

straight pipe section:

In order to ensure the measurement accuracy of the flow meter, it is recommended that the length of the upstream straight pipe segment of the sensor should be at least 5 times the pipe diameter (5D) and the length of the downstream straight pipe segment should be at least 3 times the pipe diameter (3D). (see figure 9and figure 10).

maintenance space:

For the convenience of installation, maintenance and maintenance, sufficient installation space is required around the electromagnetic flowmeter.

5. A pipeline in which flow interruption is not allowed in the process:

The by-pass pipe and cleaning port should be added in the installation of electromagnetic flow timing, as shown in figure 11. This device can guarantee the continuous operation of the equipment system when the meter is out of use.

Support of electromagnetic flowmeter:

Do not install the electromagnetic flowmeter in isolation on the freely vibrating pipe, use an installation base to fix the measuring pipe. When the electromagnetic flowmeter needs to be installed in the ground, supports should be set in both the inlet and outlet pipelines, and metal protective plates should be installed on the top of the flowmeter.

Straight pipe length requirements

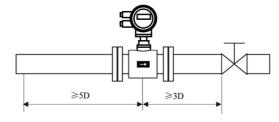


figure 9: Installation whose valve is the downstream of sensor.

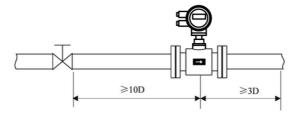


figure 10: Installation whose valve is the upstream of sensor.

The connection which is easy to clean pipe:

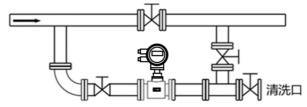
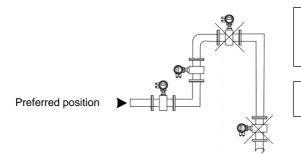
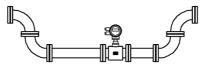



figure 11: Situation where the pipe needs to be cleaned and the fluid conduit cannot stop, you must install a bypass pipe to be able to continue running during cleaning system

3.5 Sensor installation process

This flowmeter can be set to automatically detect the positive and negative flow direction. The flow arrow on the sensor housing is the positive flow direction specified by the manufacturer. Generally, when installing the instrument, the user should keep the flow arrow in line with the field process flow.

Preferred position for electromagnetic flowmeter installation


Pipe to the highest point (air bubble concentration in the measurement tube easy to generate measurement error!)

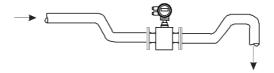
Easy to produce non - full tube measurement error!

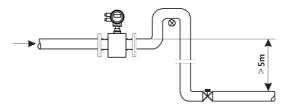
Installation direction of electromagnetic flowmeter and installation direction of sensor electrode

Sensors can be installed horizontally and vertically. Sensors in a horizontal when installation should make electrodes in a horizontal position, in this way, once the medium containing bubbles or precipitation, bubble not adsorption in the vicinity of the electrode, converter signal side open, also won't cover the precipitation electrode, the phenomenon such as zero drift.

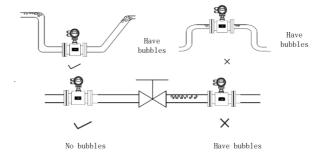
Recommended mounting position

For liquid containing solid particles or the slurry suggestion vertical installation of electromagnetic flowmeter, a can prevent the phase separation of measured medium, the second lining wear can make the sensor is evener, three impurities were not able to measure the sediment at the bottom of the tube.


The flow direction must be ensured from the bottom up to ensure that the sensor measurement tube is always filled with media.


Figure: Electromagnetic flowmeters cannot be installed on the suction side of the pump to prevent the negative pressure produced by vacuum.

Installation that downstream of the sensor has the back pressure.



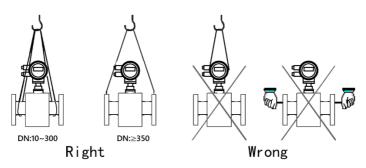
The electromagnetic flowmeter shall be installed in the bottom section (lower part of the pipe) of the open-drain pipe.

It valves shall be installed downstream of the electromagnetic flowmeter where the pipe drop exceeds 5 meters

no bubbles in the pipe

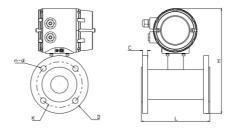
The piping design shall ensure that no gas is separated from the liquid

The flowmeter should be installed upstream of the valve because the pressure
in the pipe will be reduced due to the action of the valve, resulting in bubbles


At the same time, instruments should be installed in the lower section to reduce
the influence of entrained air bubbles on the measurement

3.6 Machinery installation

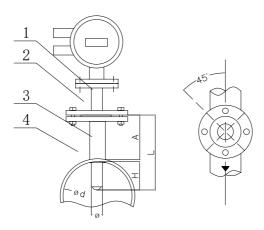
Note!


We don't supply installation materials and tools. Please use installation materials and tools that meet the occupational health standards and conform to safety regulations.

Installation of flowmeter pipe

- 1.Before installing the flowmeter, the pipeline should be calibrated to ensure that the meter's diameter has a good coaxial degree with the user's pipeline. For sensors with nominal through-diameter under 50mm, the axis of the sensor shall not exceed 1.5mm on the high side, the nominal through-diameter between 65-300mm shall not exceed 2mm, and the nominal through-diameter between 350mm and above shall not exceed 4mm.
- 2.The newly installed pipe usually has foreign matter (such as welding slag).
 Before installing the flowmeter, the sundries should be washed away, which can not only prevent the lining from being damaged, but also prevent the measurement error caused by the foreign matter passing through the measuring tube during the measurement period.

3.7 Dimensions of the pipeline electromagnetic flowmeter

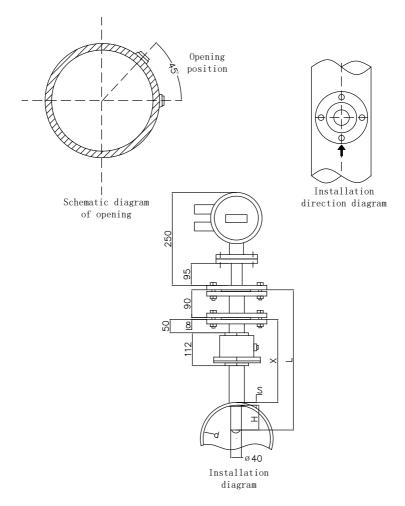


Nominal	Nominal	Connection dimension						
Diameter	pressure		(mm)					
(mm)	(MPa)	L	Н	D	K	d	n	С
15		200	315	95	65	14	4	14
20		200	315	105	75	14	4	16
25	4.0	200	315	115	85	14	4	16
32	4.0	200	315	140	100	18	4	18
40		200	315	150	110	18	4	18
50		200	320	165	125	18	4	20
65		200	350	185	145	18	8	22
80		200	365	200	160	18	8	24
100	1.6	250	380	220	180	18	8	22
125		250	410	250	210	18	8	22
150		300	440	285	240	22	8	24
200		350	495	340	295	22	8	24
250		450	560	395	350	22	12	26
300		500	600	445	400	22	12	26
350	1.0	550	670	505	460	22	16	30
400	1.0	600	720	565	515	26	16	32
450		600	765	615	565	26	20	36
500		600	820	670	620	26	20	38
600		600	930	780	725	30	20	42
700		700	1010	860	810	26	24	40
800	0.6	800	1110	975	920	30	24	44
900	0.6	900	1210	1075	1020	30	24	48
1000		1000	1310	1175	1120	30	28	52

3.8 Dimensions of plug-in electromagnetic flowmeter

1. Plug-in flange connection

The fixation method of the sensor adopts flange connection type. Firstly, calculate the length of the connecting pipe of the base according to the pipe diameter, and then weld the base to the pipe opening through the pipe opening. During the welding, pay absolute attention to the correct orientation and insertion depth of the flange hole of the base, so as to ensure that the direction of the sensor probe is perpendicular to the direction of the fluid. The base connection pipe shall not exceed the inner wall of the pipeline under test to ensure the inner wall of the outer pipeline is smooth. See the figure for the specific size and material specifications and models.



(1) DN200mm, DN300mm, DN400mm (without pressure installation)

		•	-	•
The serial number	Name/Caliber	DN200mm	DN300mm	DN400mm
1	Sensor (L×Φ)	182×	Ф38	
2	Flange	DN ((40) 1.6MPa	
3	PUP JOINT	Ф45		
4	Conduit	Φd×S		

Installation principle: Ensure the depth of electrode inserted into the water pipe H=(D-2S)10%, namely A=182-(H+S)

Note: Under the condition that the production unit is not allowed to break the flow, pressure installation can be selected. First of all, directly weld the base to the installation position of the measuring pipe, then install the ball valve at the upper root, and then use the special pipe hole opening machine provided by our company to carry out the pressure opening. After the hole is opened, close the ball valve so that the fluid will not spill, and then connect the sealing parts provided by the manufacturer, and then install the sensor. (The installation with pressure will not affect the normal production), the specific size and material specifications and models are shown in the figure.

Installation

(2) DN100-700 (Installation with pressure)

Name \ Caliber	DN100-700
Sensor (L×Φ)	400×Ф38
Seals (provided by the	Ф45×3
manufacturer)	Ψ40^3
Transition flange	DN40 1.6Mpa
Ball valve	DN50
Connecting pipe	Ф50
The pipe	Φd×S

(3)DN800mm ~ DN1200 (with pressure installation)

(p			
DN800-1200			
450×Ф38			
Ф45×3			
Ψ45*3			
DN40 1.6Mpa			
DN50			
Ф50			
Φd×S			

(3)DN1400 (with pressure installation)

Name \ Caliber	DN1400-3000
Sensor (L×Φ)	600×Ф38
Seals (provided by the	Ф45×3
manufacturer)	Ψ45^3
Transition flange	DN40 1.6Mpa
Ball valve	DN50
Connecting pipe	Ф50
The pipe	Φd×S

Note: the above are all steel pipe installation and selection, such as in cast iron, cement pipe installation, you need to customize accessories

2. Plug-in valve fastening type

Figures (1) and (2) show the two structures of sensors with and without ball valves.

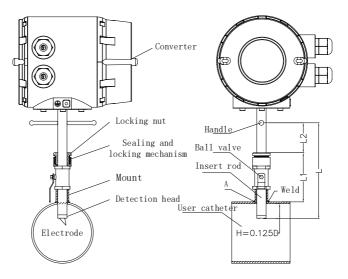


Figure 1

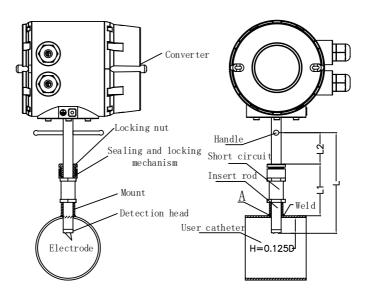


Figure 2

Please follow the following procedure steps for installation.

According to Figures (1) and (2), lift the detection rod outward until the electrode is flush with A, and then measure and record the size L2.

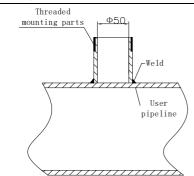
Installation - Insertion

(1) The user pipeline should be set horizontally, requiring a straight pipe section of at least 5DN in front of the sensor and at least 3DN behind it. The flow regulating valve should be located 3 DN downstream of the sensor.

The user pipeline should have no obvious vibration, and the inner wall of the pipeline should have no obvious unevenness.

- (2) First, make a measurement directly above the pipeline measurement point Φ 60-62mm holes require smooth and clean edges around the circular hole, without burrs, gas cutting scars, etc.
- (3) Unscrew the mounting parts from the sensor and reliably weld them to the above openings, with the following requirements:
- A. As shown in Figure (1), make the lower end of the installation part flush with the inner surface of the pipeline;
- B. Ensure no leakage.
- (4) Loosen the three locking screws of the sensor and pull out the entire detection rod and detection head for later installation. (Note: Users are not allowed to open the connection between the detection head and the insertion rod!)
- (5) Wrap hemp wire lead oil or PTFE tape around the upper thread of the installation part, and then tighten the ball valve together with the sealing and locking mechanism onto it.
- (6) Slowly insert the detection rod from above and tighten the locking nut slightly. Press down the insertion rod to measure the same size as the original recorded L2. The installation is complete.

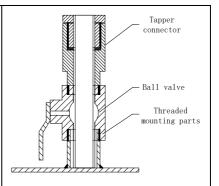
Installation - Removal

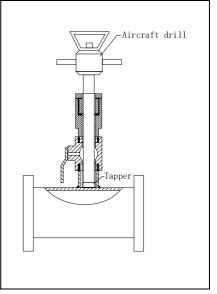

- (1) First loosen the three set screws on the side of the lock nut, and then remove the lock nut 1-2 turns to loosen the sealing ring for easy removal and insertion of the rod.
- (2) Lift the handle up and lift the insertion rod out about 250mm, then close the ball valve to remove the insertion rod.

As shown in Figures (1) and (2), L=L1+L2+H, where L and L1 are fixed measurable values, L2=L-L1-H, and the relationship between insertion depth H and pipe diameter D is shown in the table below.

Name/Caliber	Insertion depth H
DN100	Bottom (not in contact with pipe wall)
DN125-450	0.5D
DN500-DN700	0.25D
DN800-DN3000	0.125D

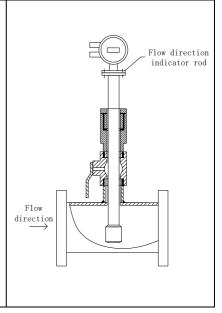
Schematic diagram of on-site installation steps for plug-in electromagnetic flowmeter


with pressure and water


Step 1: Weld the installation base to the user's process pipeline. Requirement: When welding the installation base, it must be perpendicular to the process pipeline and centered, and the welding must be reliable, as shown in the above figure.

Step 3: Open the ball valve, insert the drill bit of the hole opener into the connecting piece until it is above the user's process pipeline, tighten the compression nut on the hole opener, open the small drainage valve on the hole opener, and start drilling (note that when the process pipeline is drilled through, there is already pressure in the pipeline, and the small hole opener is pushed out. It is best to open the hole under low pressure), as shown in the figure on the right.

Step 4: After drilling the hole, slowly lift the drill bit of the hole opener into the cavity of the upper hole opener connector of the ball valve, close the ball valve, and remove the hole opener and its connector from the ball valve.



Step 2: Install the ball valve (with the long cavity of the ball valve facing upwards) and the connecting parts of the hole opener onto the installation base with fasteners, as shown in the above figure.

Step 5: Install the plug-in flow meter and sealing component onto the ball valve, and tighten the compression nut on the sealing component. Open the ball valve (note that there is already pressure in the pipeline, be careful to push out the plug-in flow meter), insert the plug-in flow meter into the specified position inside the pipeline, align the flow direction indicator rod with the water flow direction, tighten the compression nut and positioning screw, and complete the installation, as shown in the right figure.

Note: If there is no need to install with pressure and water on site, gas cutting can also be used to directly open a new one on the user's process pipeline Φ Weld the installation base with a small hole of 60.

Chapter 4 Electrical Connection

4.1 Safety Tips

Danger!

Only when power is switched off, can we do all the work about electrical connections. Please pay all attention to the power supply on the name plate!

Danger!

Please observe national installation regulations

Danger!

Please strictly observe local occupational health and safety regulations. Only those who have got properly trained are allowed to operate on the electrical equipment.

Tips!

Please check the name plate of the equipment, and confirm whether the supply is the same as your order. Check whether voltage and E-supply on the nameplate is correct. If incorrect, please contact manufacturers.

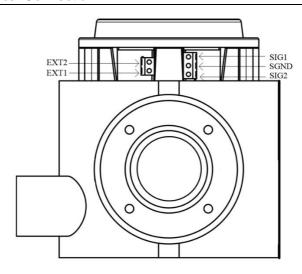
4.2 Connect Signal and Magnetic Field Current Cable

Danger!

Only when power is cut off can you connect signal and magnetic field current conductor.

Danger!

The equipment must be grounded in accordance with regulations so as to protect the operator from electrical shock.


Danger!

In case that equipment be used in explosion danger areas, special notes are given to explosion-proof instructions for safety tips.

Warning!

Please strictly observe local occupational health and safety regulations. Only those who have got properly trained are allowed to operate on the electrical equipment.

Connection illustration

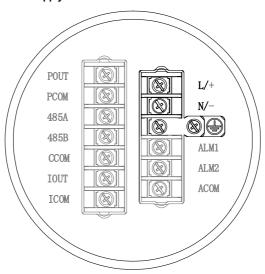
- Excitation line:
 - EXT1-- Sensor excitation coil positive terminal
 - EXT2--Sensor excitation coil negative terminal
- Signal line
 - SIG1--- The positive electrode sensor signal
 - SIG2--- The negatve electrode sensor signal
- SGND-- Signal earth

4.3 Measurement Sensor Ground

Danger!

There allows no permission of potential difference between measurement sensor and housing or converter protection ground.

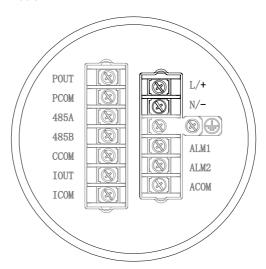
- Measurement sensor must be fully grounded
- Grounding conductor should not transfer any disturbing voltage.
- Grounding conductor is not allowed to be connected to other electrical equipment at the same time.


4.4 Connected to Power

Danger!

The equipment must be grounded in accordance with regulations so as to protect the operator from electrical shock.

220VAC Power Supply

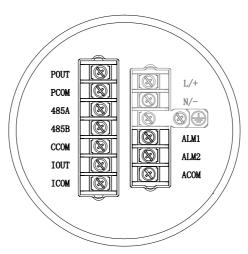


Tips!

Including allowed band: 100VAC -240VAC, 50Hz-60Hz

- L: AC phase line;
- N: AC neutral line;
- $\stackrel{\perp}{=}$: Connect ground wire to the ground screw.

24VDC Power Supply



Tips!

Allowance range: 22VDC -26VDC

- 24+:Power supply positive pole;
- 24-:Power supply negative pole.

4.5 Output introduction

Current Output

- IOUT、ICOM: 4-20mA output
- Active mode: when load $R_L \le 750\Omega$; $I_{max} \le 22mA$
- Current flow percent

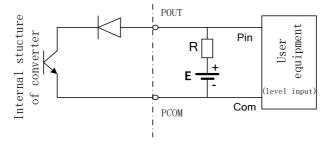
Communication output

- 485A、485B: 485 Serial communication output;
- CCOM: 485 Serial communication ground;
- Agreement: Modbus-RTU.

Alarm output

- ALM1 ALM2: alarm output terminals;
- ACOM: alarm public terminals;

Pulse, Frequency output


- Corresponding terminal is POUT, PCOM
- Active mode: High 24V, 5mA drive current
- Output electrical isolation: photoelectric isolation, isolation voltage: > 1000VDC;
- Scale:

Frequency output: Frequency 2KHz(configurable 0-5kHz)

Corresponding to the upper limit of the flow range;

Pulse output: corresponding flow rate volume of each pulse (configurable), output Pulse width: 0.1ms ~100ms, duty cycle 1:1, Fmax<= 5000 cp/s;

Elementary diagram:

Additional remarks: pulse output for OC gate output, need external power supply. General counter all wear resistance, signal can be directly connected to the counter.

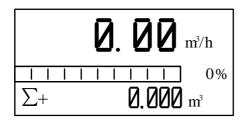
Manufacturer recommendations: upper pull resistance R is recommended to use 2 k, 0.5 W resistor, another power E recommended 24 v dc power supply.

Chapter 5 Startup

5.1 Power on

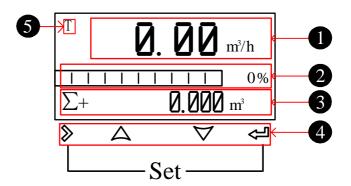
Please check whether the instrument installation is correct before power on including :

- The meter must be installed under safety compliance.
- Power supply connection must be performed in accordance with the regulation.
- Please check the electrical connection in the power supply is correct.


Tighten the converter shell back cove

5.2 Converter startup

Measuring instrument consists of measuring sensor and signal converter, the supply has been already in a state of putting-in-service.


All the operation data and engineering contents have been set according to customer order. It will have a self-check after turning on the power supply. After that, measuring instrument will immediately begin to measure and display the current values

Startup picture

Chapter 6 Operation

6.1 Flow display and operation Button

1. Flow line 1

Default: Flow

Optional: Flow, Accu fwd (Σ +: Positive flow accumulation), Accu rev(Σ -: Negative flow accumulation) and Accu net (Σ : Net flow accumulation).

Optional (loop): Flow, Accu fwd, Accu rev, Accu net and OFF.

2. Flow line 2

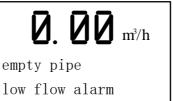
Default: Flow bar

Optional: Flow bar, Accu fwd, Accu rev, Accu net, Flow vel (current flow rate) and MT (current conductivity).

Optional (loop): Flow bar, Accu fwd, Accu rev, Accu net, Flow vel, MT and OFF.

3. Flow line 3

Default: Accu fwd


Optional: Flow bar, Accu fwd, Accu rev, Accu net, Flow vel and MT.

Optional (loop): Flow bar, Accu fwd, Accu rev, Accu net, Flow vel, MT and OFF.

Tips:

1. You can modify the parameters of [flow line 1/2/3] and [flow line 1/2/3 loop] in flow configuration 12, and the cycle interval of each parameter is 10s.

2. When alarm occurs, the cycle interval of the alarm information (including empty pipe, high flow alarm, low flow alarm, overrun pulse limit alarm and overrun flow limit) screen is 5S and the duration is 2S. This information occupies flow line 2 and 3 in the display screen, as shown in the following figure.

4. Operation keys: mechanical keys

Signal	Measuring Mode	Menu Mode	Function Mode	Data Mode
>	-	switch menu categories	-	Data right shift
Ŷ	Switch accumulative amount	Switch menu subclass	confirmation	Confirm data
$\nabla \Delta$	-	-	selection	Change data
>+←	Enter menu	Exit menu	-	-

5. Test Flag

The test flow rate is disabled by default (allowing the test parameter to be set to "N"). When the test parameter is allowed to be set to "N", the test flag "T" is not displayed. When the test flow rate is turned on (allowing the test parameters to be set to "Y"), the test flag "T" is displayed in the upper left corner of the main interface.

6.2 Flow parameter display interface

Press and hold the button \triangle for 8 seconds on the main interface to enter the flow parameter display interface, as shown in the following figure. Press the key \Rightarrow to exit.

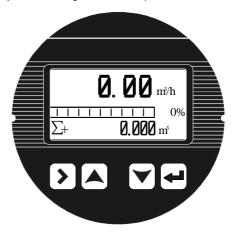
Fw:Q52F5010-1 P1
Flow=0.000 m³/h
Span=35.0000 m³/h
V=0.0000m/s Per=0 %
Sv=0.00 mv DN=50
S0=0.000 mv MT=3027
MTtrip=584 Stat=Full
V0=0.000 m/s

P1: First page

Parameter	Meaning	
Fw	Program version number	
Flow	Instantaneous flow rate	
Span	Range	
V	Velocity of flow	
Per	Hundred components	
Sv	Signal mv	
DN	Caliber	
S0	Zero point mv	
MT	Real time conductivity conversion rate	
MTtrip	Air traffic control threshold	
Stat	Air traffic control status	
V0	Zero correction flow rate	

Press the key $^{\nabla}$ on the first page of the flow parameter display interface to switch to the second page, as shown in the following figure.

Fw:Q52F5010-1	P2
Ks=1.00000	Kc=7.15925
Kf=1.00000	PGA=X3
Ia=0.1830A	EX=6.25Hz
Pls=0	Max = 2000.0
EQ=1.000L/P	


P2: The second page

Parameter	Meaning		
Fw	Program version number		
Ks	Sensor coefficient		
Кс	Converter coefficient		
Kf	Fullness coefficient		
PGA	Gain		
la	Exciting current		
EX	Excitation frequency		
Pls	Pulse output type		
Max	Upper frequency limit		
EQ	Pulse output equivalent		

6.3 Perating instructions for mechanical keys

Please open the converter cover before handling mechanical keys.

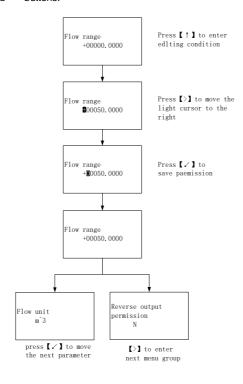
Mechanical key to enter configuration mode operation as shown in the next section.

6.4 Operating instruction

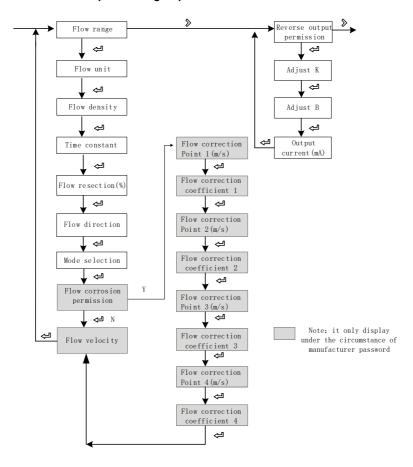
Parameter selection and adjustment

Press and together, enter into parameter setting interface.

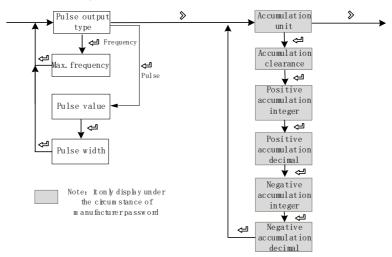
Password need to be input by then

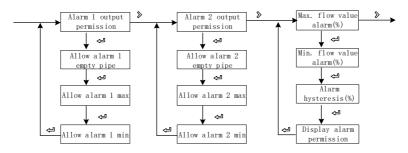

Initial users password: 200000(used for modifying the user level parameter)

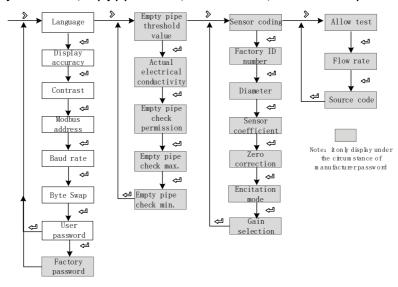
Initial manufacture password:100000 (used for modifying the manufacture level parameter)


Initial manufacture password:300000 (to set up parameter quickly)

After entering the configuration parameters, the parameters can be modified by the following operation:


User can conduct the switch operation in the menu by pressing the $^{\triangleright}$ button , switch among the parameter item of menu by pressing the $^{\triangleright}$ button, and store a modified parameter value at the same time , adjust the parameter value by pressing the $^{\triangleright}$ and $^{\triangleright}$ buttons.


Flow setup and analog output menu


Pulse output and total set menu

Alarm setup menu

System function, empty pipe function, sensors function, test function setup menu

6.5 Configuration details

NO.	Parameter	Setting mode	Password level	Parameter range	Default		
		1-F	low rate				
	Flow range	Figure	User	0-9999	35.000		
1-0	Set the maximum flo	w limit value. Us	sed to calculate the	e frequency, output cu	rrent limit		
	calculation; Alarm thre						
				L、m³、Kg、t、	m³/h		
	Flow unit	Option	User	gal、lgal			
1-1				/s、min、h			
	Choose L, m ³ , gal, lga	al such as volume	unit, the density wi	II not participate in cal	culation;		
	Choose Kg, t, such as mass unit, need to cooperate with 1-2 density parameter.						
	Fluid density	Figure	User	0.000-99.000	1.000		
1-2	·		I	volume unit is volume			
	parameter will not be		·		unici, unis		
	Time constant	Figure	User	0-99S	2s		
1-3			_	ne selected period of ti	ı		
' '	average of the instant		the parameters of the	ie selected period of ti	ille as tile		
	Flow resection	Figure	User	0-10%	1%		
1-4			ı	I	170		
1-4	Flow volume is regarded as zero if it is below the setting value						
	Zero means not remo	ve					
	Flow direction	Option	User	Positive,	Positive		
1-5				Negative			
	o o	,	ŭ	lines negative pole an	d positive		
	pole are reverse conn	ection, or reverse	sensor installation				
	Mode selection	Option	User	Positive, Negative	positive		
				Bidirection			
1-6				on indicates only for for the reverse flow, two			
	indicate two-way flow		dicate only measure	e the reverse now, two	-way		
	•		on nock inhibition of	allows configuration clo	sing \		
	Flow correction	t is not snown wil	len peak inilibition a	illows corniguration cic	sing)		
	permission	Option	User	Y、N	N		
1-10		permission Indicates whether start using flow nonlinear correction function. For detailed description,					
	please refer to chapte	•			ліриоп,		
	Flow correction point		Factory	0.0-99.999	0		
1-11			· · · · · · · · · · · · · · · · · · ·	l			
'-''	not display.	ını ı, wnen ine fi	ow rate junction shi	ut down , this paramete	er does		
	not display.						

					Idion
	Flow correction coefficient 1	Figure	Factory	0.0-99.999	1.000
1-12	Flow rate correction factors not display.	ctor 1, when The	e flow rate function s	shut down , this param	eter does
	flow correction point 2	Figure	Factory	0.0-99.999	0
1-13	Flow rate modified poin display.	t 2, when The f	ow rate function shu	ut down , this paramete	r does not
	Flow correction coefficient 2	Figure	Factory	0.0-99.999	1.000
1-14	Flow rate correction factors and display.	ctor 2, when Th	e flow rate function	shut down , this paran	neter does
	Flow correction point 3	Figure	Factory	0.0-99.999	0
1-15	Flow rate modified point not display.	t 3, when The f	low rate function sh	ut down , this paramete	er does
	Flow correction coefficient 3	Figure	Factory	0.0-99.999	1.000
1-16	Flow rate correction factors not display.	ctor 3, when The	e flow rate function s	shut down , this param	eter does
	Flow correction point 4	Figure	Factory	0.0-99.999	0
1-17	Flow rate modified point not display.	t 4, when The f	low rate function sh	ut down , this paramete	er does
	Flow correction coefficient 4	Figure	Factory	0.0-99.999	1.000
1-18	Flow rate correction factor 4, when The flow rate function shut down , this parameter does not display.				
4.04	Flow velocity (m/s)	Figure	Factory	1.000-24.000	12.000
1-24	Used to set the upper livelocity is 12m / s.	mit absolute va	lue of the measured	l flow rate. The default	flow

	2-Current output					
	Reverse output permission	Option	User	Y , N	N	
2-0	When Flow rate is rever	se ,whether 4-2	20 ma output	t is needed , pulse/freque	ency;	
	Flow rate is forward , It o	cannot be shut	down			
0.4	Adjust K	Figure	User	-99.999~99.999	01.000	
2-1	Used for adjusting the o	utput current va	alue , I = Kx	+ B		
	Adjust B	Figure	User	-99.999~99.999	00.000	
2-2	Used for adjusting the o	utput current va	alue , I = Kx	+ B		
0.0	Output current	Display	User	4.00-20.00		
2-3	Display the current outp	ut of current va	lue(mA)			
		3- Pulse/frequ	ency/alarm	output		
0.0	Pulse output type	Option	User	Frequency、Pulse	Frequency	
3-0	Optional frequency ,puls	e equivalent/al	arm output.			
	Max. frequency	Figure	User	0-5000	2000	
3-2	Set the corresponding vertical frequency output, this p			ow upper limit ; when sel	ect for	
	Pulse value (L/P)	Option	User	0.001-999.999	1.0	
3-3	Set the cumulant that each pulse stand for ; When selecting is the pulse output, this parameter display.					
3-4	Pulse width (ms)	Option	User	10ms、20ms、 50ms、100ms、 200ms、50%	50%	
	Set Pulse width. When	selecting is the	pulse output	t, this parameter display.		

				979		
		4-Acc	cumulation			
4-0	Accumulation unit	Option	Factory	m³、kg、t、gal、 lgal、L	m³	
	Accumulation unit.					
	Accumulation clearance	Option	Factory	Y. N	N	
4-1	Clear accumulation amour	nt				
4-2	Positive accumulation integer	Figure	Factory	0-99999999	0	
	Set total positive integer part					
4-3	Positive accumulation decimal	Figure	Factory	0.0-0.999	0.0	
	Set total positive decimal p	part				
4-4	Negative accumulation integer	Figure	Factory	0-99999999	0	
	Set reverse total integer part					
4-5	Negative accumulation decimal	Figure	Factory	0.0-0.999	0.0	
	Set reverse total decimal p	art				

	5-Alarm contacts 1						
- 4	Alarm1 output permission	Option	User	Y/N	N		
5-1	Allow touch spot 1 output main switch , when set to N, the following parameters do not display.						
	Allow alarm1 empty pipe	Option	User	Y/N	N		
5-3	Allow empty pipe alarm output switch, the system detects empty pipe, contact 1 output alarm signal automatically. When allowed alarm output configuration as N, this parameter does not display.						
	Allow alarm1 max.	Option	User	Y/N	N		
5-4	Allow flow rate upper limit alarm output switch , when the instantaneous flow is greater than the flow rate lower limit value, touch spot 1 output alarm signal automatically. The instructions are specific Settings in 7-1. When allowed to alarm output configuration for N, this parameter is not displayed.						
	Allow alarm1 min.	Option	User	Y/N	N		
5-5	Allow flow rate lower limit at the flow rate lower limit val The instructions are specif When allowed to alarm ou	ue, touch sp ic Settings ir	ot 1 output alarm siç ı 7-2.	gnal automatically.			
		6-Alarn	n contacts 2				
0.4	Alarm2 output permission	Option	User	Y/N	N		
6-1	Allow touch spot 2 output main switch , when set to N, the following parameters do not display.						
	Allow alarm2 empty pipe	Option	User	Y/N	N		
6-3	Allow empty pipe alarm output switch, the system detects empty pipe, contact 2 output alarm signal automatically. When allowed alarm output configuration as N, this parameter does not display.						

	Allow alarm2 max.	Option	User	Y/N	N	
	Allow flow rate upper limit	alarm output	switch, when the ir	nstantaneous flow is g	reater	
6-4	than the flow rate lower lin	nit value, tou	ch spot 2 output ala	rm signal automatically	y.	
	The instructions are specif	ic Settings ir	ı 7-1.			
	When allowed to alarm ou	tput configur	ation for N, this para	meter is not displayed	i.	
	Allow alarm1 min.	Option	User	Y/N	N	
	Allow flow rate lower limit	alarm output	switch , when the in	stantaneous flow is le	ss than	
6-5	the flow rate lower limit va	lue, touch sp	ot 2 output alarm si	gnal automatically. The	•	
	instructions are specific Se	ettings in 7-2				
	When allowed to alarm ou	tput configur	ation for N, this para	nmeter is not displayed	i.	
		7-Al	arm setup			
7-0	Max. flow value alarm	Figure	User	0-999.9%	100%	
7-0	Set the upper limit alarm value, measuring range percentage					
7-1	Min. flow value alarm	Figure	User	0-999.9%	0%	
7-1	Set the lower limit alarm value, measuring range percentage					
	Alarm hysteresis	Figure	User	0-99.9%	1%	
	Used to eliminate the alarm when the disturbance					
7-2	Upper limit elimination conditions: instantaneous flow is less than the upper limit alarm					
1-2	value – return difference					
	Lower limit elimination conditions: instantaneous flow is greater than the upper limit alarm					
	value + return difference					
	Display alarm	Option	User	Y/N	N	
7-3	permission	Орион	0361	1711	IN.	
	Allows the alarm message	display onto	to the main picture	switch		

	8-System					
	Language	Option	User	Chinese/English	Chinese	
8-0	Set configuration display la	anguage				
8-1	Display accuracy	Figure	User	0-4	2	
8-1	The instantaneous volume of decimal digits					
0.0	Contrast	Figure	User	0-100%	50%	
8-2	Contrast ratio of Liquid cry	stal display		.		
	Modbus address	Figure	User	1-247	8	
8-3	Communication agreemen	t instrument	address Based on t	the RS485 protocol Mo	odbus	
8-4	Baud rate	Option	User	1200、2400、 4800、9600、	9600	
	Baud rate of serial commu	nication veri	fication mode			
8-5	Even-odd check	Option	User	NONE/ODD/ EVEN	NONE	
	Serial communication verif	ication mode	e of physical layer			
8-6	Byte Swap	Option	User	2-14-3、3-41- 2、4-31-2、1- 23-4	2-1 4-3	
	Byte switching order for se	rial commun	ication at the physic	cal layer		
	User password	Figure	User	00000-999999	000000	
8-8	User-level password for viewing and modifying user-level parameter configurations, User initial password: 200000					
	Factory password	Figure	Factory	00000-999999	000000	
8-9	Factory-level password for Factory initial password: 1	•	I modifying user-lev	el parameter configura	ations,	

				<u> </u>	
	1	9-Empty tu	be parameters		
9-0	Empty pipe threshold value	Figure	Factory	0-100%	50%
	Empty tube alarm judgemer	nt gate value			
	Actual electrical conductivity	Display	Factory		
	Display the measured cond	uctivity equiv	alent of the fluid.		
9-1	For general natural water: equivalent < 200 when tube is full, when empty tube > 200 (the equivalent is related to the fluid conductivity and the length of measuring line, it is recommended double shielded wire is used when the wiring distance is 20m, otherwise it will affect empty detection function.				
9-2	Empty pipe check permission	Option	Factory	Y , N	Y
	Set whether open empty de	tection funct	ion		
	Empty pipe check max.	Figure	Factory	0-9999	1200
9-3	Measured conductivity equi- for general natural water. wh write in 9-3		•	•	
	Empty pipe check min.	Figure	Factory	0-9999	200
9-4	Measured conductivity equiving general natural water, which write in 9-4				
0.5	Empty pipe check hysteresis	Figure	Factory	0-9999	30
9-5	used within 20 mete	rs of the			
	Empty pipe check num	Figure	Factory	0-99	05
9-6	Set the number of empty pip continuously detected, an e			nal of this number i	s

	10-Sensor					
10-0	Sensor coding	Figure symbol		Factory	16 digital	
	Used for dentify senso	rs				
	Factory ID number	Figure		Factory	6 digital	
10-1	Identification number					
40.0	Diameter Option Factory		3-2000	50		
10-2	Sensor size					
	Sensor coefficient	Figure		Factory	0-99.99999	01.00000
10-4	The flowmeter coeffici- manufacture For details, see senso			·	to the actual flow voluments	e by sensor
	Zero correction	Figure		Factory	-9.9999~9.9999	+0.0000
10-6	Sensor nonlinear correction when used for small flow (below 0.3 m/s) V is the real-time flow rate displayed above, V (after correction) = V (before correction) zero correction value					correction) +
10-7	Excitation mode	Option	Option Factory		3.125Hz、6.25 Hz、 12.5 Hz、25 Hz	6.25Hz
	The choice of excitation	n frequency	y: 3.12	25Hz 、6.25	5Hz、12.5Hz、25 Hz	
	Gain selection	Option	Option Factory 1/3/9			
10-9	Gain choice: adjust the Gain adjustment: 1.	•	chang	e the range	of flow speed	
			11-	-Test		
	Allow	Option	F	actory	Y/N	N
11-0	Set Y allow simulate velocity, the flag "T" is displayed in the upper left corner of					
	the main interface,	After the p	ower	failure auto	omatically restored to	N.
11-1	Simulate velocity (m/s)	Figure	F	actory	-12.000~12.000	1.000
	Set value of simulate	velocity,	"11-(allow test	" should be set to "Y"	
	Simulate code	Option	F	actory	Y/N	N
11-2	After setting Y, the original signal code will be displayed in the running screen. This screen also displays the firmware version and product serial number.					

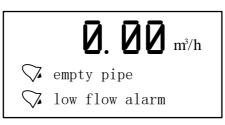
12-Display							
12-0	Flow line 1	Option	User	Flow、Accu fwd、 Accu rev、Accu net	Flow		
	A parameter can be se	lected as the d	isplay paramet	er of flow line 1.			
12-1	Flow line 1 loop	Option	User	Flow、Accu fwd、 Accu rev、Accu net、 OFF	OFF		
	You can turn off or sele	ect another para	ameter as the l	oop display parameter of flo	w line 1		
12-2	Flow line 2	Option	User	Flow bar、Accu fwd、 Accu rev、Accu net、 Flow vel、MT	Flow bar		
	A parameter can be selected as the display parameter of flow line 2.						
12-3	Flow line 2 loop	Option	User	Flow bar、Accu fwd、 Accu rev、Accu net、 Flow vel、MT、OFF	OFF		
	You can turn off or sele	ou can turn off or select another parameter as the loop display parameter of flow line 2.					
12-4	Flow line 3	Option	User	Flow bar、Accu fwd、 Accu rev、Accu net、 Flow vel、MT	Accu fwd		
	A parameter can be se	A parameter can be selected as the display parameter of flow line 3.					
12-5	Flow line 3 loop	Option	User	Flow bar、Accu fwd、 Accu rev、Accu net、 Flow vel、MT、OFF	OFF		
	You can turn off or sele	ect another para	ameter as the l	oop display parameter of flo	w line 3.		

6.6 Quick setup menu

1. Press on and at same time, Instrument parameter is set at the interface. Password need to be input at this time.

Quickly set the password: 300000

- 2. The user can use the key ♦ to switch between menu pages, use the key A and key to adjust the parameter value, then use the key ✓ to confirm.
- 3. The parameters that can be set are shown in the table below.
- 4. After modification, move to the menu page [exit config], select Y and press on ←□


NO.	Parameter words	Setting mode	Parameter range	default
1	Diameter(mm)	Option	3-2000	50
2	Flow range	Figure	0-99999	35.000
3	Sensor coefficient	Figure	0-99999	1.000
4	Zero correction	Figure	0-99999	0.0
5	Accumulation clearance	Option	Y、N	N
6	Flow resection(%)	Figure	0-99%	1%
7	Time constant	Figure	0-99S	3s
8	Pulse output type	Option	Pulse、 Frequency	Frequenc y
9	Max.frequency	Figure	0~5000.0	2000.0
10	Pulse value(L/P)	Figure	0~999999.999	1.000

Chapter 7 Functions

7.1 System information

Flow meter itself has the self-diagnosis function, in addition to the power supply and circuit board hardware failures, it can correctly provide the corresponding alarm message to the fault in general application .

Display position in measuring picture

System information sheet

Display	Alarm content
empty pipe	Sensor empty pipe
high flow alarm	The current instantaneous flow rate exceeds the
	setting flow limit
low flow alarm	The current instantaneous flow rate is below the
low now alann	setting flow lower limit
overrun pulse	The pulse output frequency exceeds the setting
limit alarm	frequency upper limit
overrun flow limit	The current instantaneous flow rate exceeds the setting flow limit

7.2 Pulse/Frequency/Current output

Pulse equivalent output

It is mainly used for sensor manufacturer **coefficient calibration** and user measurement use. In the third way configuration parameter Settings:

Pulse equivalent corresponding cumulants, indicate each pulse corresponding to the relevant volume number .

For example:

Parameter setting as 0.1L/p

The current instantaneous flow 3.6m³/h

Number of pulses per second output is $3.6 \times 1000/3600/0.1 = 10$

Notes:

When the parameter is set to 0.4L/p

The current instantaneous flow is 3.6 m³/h

Number of pulses per second output is : $3.6 \times 1000/3600/0.4 = 2.5$

Encounter the above situation, the decimal part of 2.5 pulse will automatically get into the next second output, data loss will not happen.

The pulse equivalent shouldn't be set too small when the pipe flow is small , otherwise it will cause pulse output exceeds the limit, then the main screen will appear [overrun pulse limit alarm] system alarm information. Users need to reset pulse equivalent parameters. Similarly, when the pipe flow is small the selected pulse equivalent cannot too big, otherwise it will cause the instrument to output a pulse for a long time, cause measurement error .

Pulse equivalent output is different from frequency output, pulse output will output a pulse when a pulse equivalent is accumulated enough , so the pulse output is uneven . Counter instrument should be used when measure pulse output , Frequency meter instrument shouldn't be used.

Frequency output

It is mainly used for manufacturer coefficient calibration and user measurement use. In the third group configuration parameters setting: frequency corresponding to instantaneous flow rate, upper frequency limit corresponding to max. flow rate.

Note: the maximum frequency set to 5000 Hz.

Current output

Mainly used for transmitting output to other intelligent instruments, such as: digital display table, recorder, PLC, DCS, etc.

The current output type: 4-20mA.

The current valve corresponding to Instantaneous flow rate, 20 mA corresponding to range limit, 4 mA corresponding to range limit.

Conversion relationship

$$I_{\text{real time}} = \frac{Q_{\text{real time}}}{Q_{\text{max}}} 16.00 + 4.00$$

Unit: mA

Notice:

Q real time Indicate the instantaneous flow rate

Q MAX Indicate the current instrument range

I real time Indicate Real time current value

Functions

7.3 Serial communication

This instrument provides a standard RS485 serial communication interface, using the international standard Modbus-RTU communication protocol that supports 04 Read Input Registers command.

Register address

Parameter	Туре	Address	Explanation
Real flow rate	float	100	
Real flow velocity	float	102	
Flow percentage	float	104	50 stands for 50%
Electric conductivity	float	106	
Forward flow accumulation of integer	ulong	108	
Forward flow accumulation of decimal	ulong	110	The decimal part magnifies 1000 times 123stand for 0.123
Reverse flow accumulation of integer	ulong	112	
Reverse flow accumulation of decimal	ulong	114	The decimal part magnifies 1000 times 123stand for 0.123

Note: float/ulong/long type data, Communication transmission in byte order 2-1-4-3; ushort type data Transmission in accordance with 2-1.

Communication configuration

Mailing address: 1-247;

Default address: 8;

Baud rate: 1200 \ 2400 \ 4800 \ 9600;

The default baud rate: 9600;

Check: no check, odd parity, parity;

Default no check:

For 32-bit data (long plastic or floating point) arranged in the communication frame;

Example: Long integer 16909060(01020304H): 03 04 01 02

Floating number 4.00(40800000H): 00 00 40 80

Readout real-time quantity floating-point communications, example:

Real-time Floating-point Numbers readout Send message: 08 04 00 63 00 02 81 4C

Return message: 08 04 04 22 6E 41 3F 79 61(Instantaneous flow rate: 11.95)

Forward flow rate accumulate readout

Send message: 08 04 00 6B 00 04 80 8C

Return message: 08 04 08 00 6C 00 00 00 7B 00 00 D6 8E (The cumulative integer:

108 , Cumulative decimal: 0.123 , Accumulation: 108.123)

Functions

7.4 Firmware upgrade instructions

- Connect the instrument and computer through RS485 serial communication interface, open [DFU firmware online upgrade] software, and click [next].
- Enter the [1/5 open upgrade package] interface, click the folder and select the
 given upgrade package file. The file name is: current version → upgrade
 version, and the format is [. dfu], such as [Q52F3006 → Q52F3010. dfu],
 then click [next]
- Enter the [2/5 communication configuration] interface and select [serial port],
 [communication address], [baud rate], [verification method] (It is consistent with the parameters set in the instrument).
- 4. Enter the [3/5 connect instrument] interface, confirm that the [instrument string code] is the firmware version of the current instrument, and click [next].
- Enter the [4/5 upgrade warning] interface and enter the [upgrade
 authorization code] provided by the manufacturer. To upgrade the 485
 communication firmware online, you should first adjust the instrument screen
 to [11-2 Source code], select [Y], and then click [next] of DFU software.
- Enter the [5/5 download firmware] interface, wait for the firmware upgrade to display [finish], and click [finish]. Enter the instrument configuration interface and confirm the firmware version in the upper right corner.

7.5 Operation instructions of flow correction function

In principle, used for small flow rate less than (0.5 m/s) linear adjustment. Correction calculation is conducted on the original sensor flow coefficient curve correction, therefore, should be closed nonlinear correction function, mark sensor coefficient. Then allow the nonlinear correction function, according to the nonlinear of sensor, setting correction coefficient, piecewise corrected. If the coefficient is set right, no need to calibration.

The functional design with 4 period of correction, is divided into four flow point and correction coefficient.

The corresponding velocity of correction point must meet:

Correction point $1 \ge$ Correction point $2 \ge$ Correction point $3 \ge$ Correction point $4 \ge 0$.

The original velocity stand for the real standard velocity, the revised flow velocity is called modified velocity, the modified computation formula is as follows:

- The original flow velocity ≥ The modified point 1
 The flow velocity keep unchangeable.
- At the interval of the modified point 1 > The original flow velocity ≥ The modified point 2
 - The modified flow velocity = Correction factor 1 × The original flow velocity
- At the interval of the modified point 2 > The original flow velocity ≥The modified point 3
 - The modified flow velocity = Correction factor 2 × The original flow velocity
- At the interval of the modified point 3 > The original flow velocity ≥ The modified point 4
 - The modified flow velocity = Correction factor 3× The original flow velocity
- At the interval of the modified point 4 > The original flow velocity ≥ 0
 The modified flow velocity = Correction factor 4× The original flow velocity

Note: when set the modified point, should keep the following relationship Modified point 1 > Modified point 2 > Modified point 3 > Modified point 4 > 0 The intermediate value of Correction coefficient is 1.0000, if the correction coefficient is greater than 1, then increase the flow velocity; if the correction coefficient is less than 1, then decrease the flow velocity.

Functions

Case1:

The original flow velocity:0~0.4m/s, correction factor changes to 1.2.

Parameter setting

Flow correction	Flow correction	Flow correction	Flow correction
point 1	point 2	point 3	point 4
0.4	0	0	0
Flow correction	Flow correction	Flow correction	Flow correction
coefficient 1	coefficient 2	coefficient 3	coefficient 4
1.2	1	1	1

The modified flow velocity

The original flow velocity	The modified flow velocity
0~0.4m/s	1.2 × The original flow velocity

Case2:

The original flow velocity:0.2~0.4m/s, correction factor changes to 0.9.

The original flow velocity: 0.4~0.5m/s, correction factor changes to 1.1.

Parameter setting

Flow correction point 1	Flow correction point 2	Flow correction point 3	Flow correction point 4
0.5	0.4	0.2	0
Flow correction coefficient 1	Flow correction coefficient 2	Flow correction coefficient 3	Flow correction coefficient 4
0.9	1.1	1	1

The modified flow velocity

The original flow velocity	The modified flow velocity	
0.2~0.4m/s	0.9 × The original flow velocity	
0.4~0.5m/s	1.1 × The original flow velocity	

Case3:

The original flow velocity:0.1~0.2m/s, correction factor changes to 0.9.

The original flow velocity:0.2~0.3m/s, correction factor changes to 1.1.

The original flow velocity:0.3~0.4m/s, correction factor changes to 0.8.

Parameter setting

Flow correction	Flow correction	Flow correction	Flow correction
point 1	point 2	point 3	point 4
0.4	0.3	0.2	0.1
Flow correction	Flow correction	Flow correction	Flow correction
coefficient 1	coefficient 2	coefficient 3	coefficient 4
0.8	1.1	0.9	1

The modified flow velocity

The original flow velocity	The modified flow velocity
0.1~0.2m/s	0.9 × The original flow velocity
0.2~0.3m/s	1.1 × The original flow velocity
0.3~0.4m/s	0.8 × The original flow velocity

Case4:

The original flow velocity:0.1~0.2m/s, correction factor changes to 0.9.

The original flow velocity:0.3~0.4m/s, correction factor changes to 1.1.

Parameter setting

Flow correction	Flow correction	Flow correction	Flow correction
point 1	point 2	point 3	point 4
0.4	0.3	0.2	0.1
Flow correction	Flow correction	Flow correction	Flow correction
coefficient 1	coefficient 2	coefficient 3	coefficient 4
1.1	1	0.9	1

The modified flow velocity

The original flow velocity	The modified flow velocity
0.1~0.2m/s	0.9 × The original flow velocity
0.3~0.4m/s	1.1 × The original flow velocity

Functions

Case5:

The original flow velocity:0~0.2m/s, correction factor changes to 0.9.

The original flow velocity:0.2~0.3m/s, correction factor changes to 1.1.

The original flow velocity: 0.3~0.4m/s, correction factor changes to 0.8.

The original flow velocity:0.4~0.5m/s, correction factor changes to 0.9.

Parameter setting

Flow correction	Flow correction	Flow correction	Flow correction
point 1	point 2	point 3	point 4
0.5	0.4	0.3	0.2
Flow correction	Flow correction	Flow correction	Flow correction
coefficient 1	coefficient 2	coefficient 3	coefficient 4
0.9	0.8	1.1	0.7

The modified flow velocity

The original flow velocity	The modified flow velocity
0~0.2m/s	0.7 × The original flow velocity
0.2~0.3m/s	1.1 × The original flow velocity
0.3~0.4m/s	0.8 × The original flow velocity
0.4~0.5m/s	0.9 × The original flow velocity

Chapter 8 Technical parameters

8.1 Technical parameters

Measuring system

Measuring principle	Faraday's law of electromagnetic induction		
Function	Instantaneous flow rate, flow velocity, mass flow (when the density is constant), real-time measurement and flow accumulation		
Module	Measurement system is ma	ade up of signal converter and	
configuration	measurement sensor.		
Flow meter			
Protection class	IP65		
Pipeline sensor			
Nominal Diameter	DN15-DN1000		
	In line with GB / T9119-2000 standard carbon steel (Optional		
Flange	stainless-steel flanges), and	ther standard flange can be	
	customized		
	DN15 – DN50, PN≤4.0MPa		
Pressure rating	DN65 - DN150, PN≤1.6MPa		
1 Toodard Taking	DN200 – DN600, PN≤1.0MPa		
	DN700 – DN1000, PN≤0.6MPa		
Lining Material	Chloroprene rubber (CR),Polytetrafluoroethylene (PTFE/F4),		
Electrode Material	316L Stainless Steel,		
Protection class	IP68 IP65		
Medium	-25 − 180°C		
temperature			
Buried depth	Less than 5 meters (only IP68 protection of split type sensor)		
Immersion depth	Less than 3 meters (only IP68 protection of split type sensor)		

Technical parameters

Plug in sensor			
Nominal Diameter	DN100 ~ DN3000		
Flange	In accordance w	rith GB9119 standard, stainless steel	
Classes	1.6MPa (2.5 MF	Pa Customizable)	
Sensor housing material	Stainless steel		
Sensor structure material	Stainless steel/F	PVDF	
Electrical conductivity	≥5µs/cm(customizable below5µs/cm)		
Electrode	316L Stainless Steel, Hastelloy C, Hastelloy B, Ti, Ta, Pt		
Protection class	IP65	IP65/IP67(Sensor optional IP68)	
Medium temperature	- 25℃ ~ 80℃	- 25℃ ~ 120℃	
The environment temperature	-25℃ ~60℃		
Ambient temperature influence	<±0.1%/10°C or<±0.25%/10°C		
Repetition	≤±0.01% or≤±0.25%		
Analog output error	≤±0.02mA		
Measured range velocity	It can be set in 1-24, and the default is ≤12m/s		
Buried depth	_	≤5m (ONLY IP68)	
Electrical connections	M20 * 1.5 Sealing sleeve, G1/2, NPT1/2		
Sensor cable	<30M	It needs to be customized for extra	
		length	

Function

Communications	Serial	
Output	Current (4-20 mA), Pulse, Frequency, State switch	
Function	ATC recognition, electrode contamination	

Display user interface

O	Monochrome LCD, white backlight; Size: 128*64 pixels	
Graphic display	OLED, green, 128*64 pixels	
Display function	measurement value pictures can automatic circulation (measurements, condition, etc.)	
Language	English, Chinese	
Unit	You can configure the menu to select the unit, see "6.3 Configuration details" and "flow units 1-1" and "4-0 Accumulation Unit" section.	
Operating unit	Mechanical key	

Measurement accuracy

Accuracy grade	Pipe segment type: 0.5%		
Repeatability	Pipe segment type: 0.15%		
Maximum measured	It can be set in 1-24, and the absolute value of the		
flow rate	maximum measured flow rate is 12m / s by default.		

Operating environment

Temperature	
Environment	-10℃ - 55℃
Storage	-40℃ - 65℃
Conductivity	
Conductivity	> 30µS/cm

Material

Sensor housing	Carbon steel	
Converter	Standard die cast aluminum	

Technical parameters

Electrical connections

Power supply	100-240VAC, 50/60Hz		
Power	May 45VA		
consumption	Max 15VA		
Signal cable	Apply only to split type		
Shielded cable	Signal section, wire: 0.5mm² Cu /AWG20		

Output

σιραί			
Current output			
function	Measurement of volume and quality (in the case of constant density)		
	scope		4-20mA
Setting	Max		20mA
	Min		4mA
Internal voltage	24VDC		
loading	≤750Ω		
Pulse and frequency output			
function	Set up Pulse and frequency output		
		Output pulse width: 0.25ms ~100ms	
	basis	Duty cycle: 50% (Pulse frequency ≥5Hz)	
Pulse output		Fm	_{nax} ≤ 5000 cp/s
	setting	0.0	001L – 1m ³
_	Max F _{max} ≤ 5000H _z		_{nax} ≤ 5000H _z
frequency	setting 0-5000Hz		5000Hz
	Active frequency/pulse output voltageU _{inner} ≤ 24VDC		
active	Active frequency/pulse output current l≤ 4.52mA		
passive	Outer ≤ 36VDC		
Relay output			
function	Output as alarm		

8.2 Flow Meter

	Q _{100%} Unit m³/h				
V[m/s]	0.3	1	3	7	
DN[mm]	Min flow	Common flow		Max flow	
15	0.19	0.64	1.91	4.45	
20	0.34	1.13	3.39	7.91	
25	0.53	1.77	5.30	12.39	
32	0.87	2.90	8.69	20.27	
40	1.36	4.52	13.57	31.67	
50	2.12	7.07	21.21	49.48	
65	3.58	11.95	35.84	83.62	
80	5.43	18.10	54.29	126.67	
100	8.48	28.27	84.82	197.92	
125	13.25	44.18	132.54	309.25	
150	19.09	63.62	190.85	445.32	
200	33.93	113.10	339.30	791.70	
250	53.01	176.71	530.13	1236.97	
300	76.34	254.47	763.41	1781.29	
350	103.91	346.36	1039.08	2424.52	
400	135.72	452.39	1357.17	3166.73	
500	212.06	706.86	2120.58	4948.02	
600	305.37	1017.90	3053.70	7125.30	
700	415.62	1385.40	4156.20	9697.80	
800	542.88	1809.60	5428.80	12667.20	
900	687.06	2290.20	6870.60	16031.40	
1000	848.22	2827.40	8482.20	19791.80	

